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Introduction

These lectures have two objectives. One is to explain in an el-
ementary way some recent advances in the theory of irreversibility.
The other is to describe several mathematical ideas and devices that
are useful in this subject.

The recent advances to which we refer are due mainly to Van
Hovel» % and to Prigogine and his co-workers. 3,4 Van Hove and
Prigogine have developed an elaborate mathematical technique for
following the temporal evolution of initial states of many-body sys -
tems. They use an infinite order perturbation theory, along with
various prescriptions, based on physical arguments, for keeping
specific terms in the perturbation expansion, and leaving out the rest

The idea of starting out with a precisely, (although not neces-
sarily completely), defined initial state is useful and attractive. It
distinguishes the work of Van Hove and the Prigogine school from
most earlier work in this field. (Kubo's theory of lineat transport
processes, 5 discussed in this volume by Montroll (p.221), is in the
same spirit.)

However, the infinite order, many-body perturbation theory
often seems to be more complicated than is really needed. One has
to pay close attention to the details of tedious combinatorial and
topological (or "diagrammatic'') arguments; this can obscure funda-
mental questions of a more physical kind.

We shall show in these lectures that much of the combinatorial
topology can be avoided entirely by analytic methods that are at least
as clear, and considerably more compact. These methods.are pre-
sented in Sections II, III and IV. )

A significant difference between the work of Prigogine and that
of Van Hove is that Prigogine studied mainly the classical ensemble
distribution function and the classical Liouville equation, while Van
Hove was concerned with the quantum mechanical wave function and
the Schroedinger equation. Van Hove had to deal with the additional
formal complication, not occurring in classical statistical mechanics,
that average values of observables are bilinear in the wave function.

In these lectures we show how this extra complication can be
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avoided by using the density matrix. We thereby display a striking
formal similarity between weak-coupling problems in classical and
quantum statistical mechanics.

Section VI contains two examples of our general method. The
first is a new derivation of the Pauli equation, and the second is a
derivation of a classical analogue, due originally to Prigogine and
Brout.

Some new material on the evaluation of time correlation func-
tions is presented in Section VII.

From the point of view of fundamental theory of irreversibility,
Section V is perhaps the most important in these lectures. This
section has to do with the time dependence of physical quantities,
and with some mathematical methods that are pertinent. We work
out a special prototype example in great detail, with emphasis on
asymptotic time dependence, and on the effect of the finite size of a
real physical system.

I. The Dynamical Problem

In both classical and quantum mechanics, dynamical problems
can be formulated in terms of operators in Hilbert space. Because
this is a powerful method, and because it has universal applicability,
we shall discuss it first,

The Hilbert space formulation of quantum mechanics has been
common knowledge for a long time; the corresponding formulation
of classical mechanics has existed almost as long, but is not nearly
so widely known. In this section I shall mention also the relatively
unfamiliar formulation of quantum mechanics in terms of the Hil-
bert space of operators (rather than of states); this should be quite
useful in quantum statistical mechanics,

In all cases we shall find that equations of motion can be writ-
ten in the simple form

. dx

= Lk 1
e Lx (I.1)

where x is a vector in Hilbert space and L is a Hermitian operator.
In classical mechanics the equation of motion of any dynamical

quantity a(R, p), depending on coordinates R and momenta p, but not

explicitly on time, can be written in Poisson bracket form:

da

Frall -{H, a} (1.2

P.B.

Here H is the Hamiltonian function and { }P. p, denotes the Pois -
son bracket. Let us define the Liouville operator L by

., da _ .
ig = - La = —1{H,a}P.B. . (I.3)

More specifically, L is
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oH ® 8H 9
- L8 9 1.4
L=i%g % ~' 8p R (I 4)

The operator L was first introduced by Koopmane. Note that L is

Hermitian in the Hilbert space of phase functions.
Liouville 's equation for the time dependence of the phase

space ensemble density f(R, p; t) is

of
i — = . 1.5
ia L{ ( }

The change in sign from Eq. (3) to Eq. (5) is important.
The classical equations of motion possess formal solutions as
initial value problems. These solutions are given by exponential

operators,
a(t) = exp(itL) - a(0), (1. 6)
£{t) = exp (-itL) - £(0). (LI.7)

The operator exp(x itL) is unitary in Hilbert space. It is often re-
ferred to as a Green! s function or a propagator. Its Laplace trans-
form with respect to time,
00
- itL 1
f dt e pt e1 =
0

p__——if (1. 8)

is also called a Green' s function, propagator and, more often, a
resolvent operator.

Equations (6§ and (7) illustrate a kind of Heisenberg picture in

classical mechanics. The expectation value of a variable o(R, p),

weighted according to the ensemble density £(R, p;t), is
< a; £t) > = [[dR dp a(R,p) {(R, pit). (1.9)
The integration covers all of phase space. But this average is glso
< ft)> =< a5 e T E0) >

< Mo 5oy >

< alt); £(0)> . (1.10)

il

The expectation at t can be calculated in two ways: by following the

evolution of either the ensemble density or the dynamical variable.
It is a matter of convenience which is preferred.
In quantum mechanics, an observable a is represented by a
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matrix or an operator in Hilbert space. The evolution of a is de-
termined by Heisenberg's equation of motion,

. 1
i=== -—[H,a] = e (Ha - aH). (1.11)
We can define a linear Hermitian operator L by

La = [H,a], (I.12)

1
H
then Eq. (11) becomes

. da

i e = - La. (1.13)

This L is an operator that works in the Hilbert space of operators
rather than the space of states.

8The quantum mechanical L has been mentioned by ]E(ubo,7
Fano® has shown how to calculate it explicitly in, for example, spin

and

problems.
Liouville's equation for the density matrix p(t) is
, dp 1
151 —T‘—[H,p] = Lp. (1.14)

Again note the change in sign from Eq. (13), which reflects the
Heisenberg-Schroedinger duality.

The quantum mechanical equations of motion also have formal
operator solutions, which can be written in the familiar Hamiltonian
or the unfamiliar Liouville form,

iHt/h -iHt/h itL
(1( e = e

alt) = e 0)

-iHt/h
p(0

a(0), (1.15)

iHt /A -itL
e = €

) p(0). {(1.16)

p(t) = e
The expectation of a, weighted according to p(t), is
< a; p(t) > = Trace {a p(t)} . (1.17)

It is easy to verify the quantum form of Eq. (10).
This shows that all equations of motion can be written in the
general form

. dx
Dyl Lx,

where L is Hermitian. We have introduced the formal, abstract
operator solution

x{t) = G(t) x(0), (1.18)
G(t) = exp (-itL). (1.19)
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Much of the current work in statistical mechanics consists of finding

useful approximations for G{t).*

1I. The Diagonal Part of Glt)
On many occasions one is not i
G(t), but only in its diagonal matrix elements. We shall give an
example later; for the present let us just assume that this is so.
There is an obvious, though hard, way of calculating G(t).
This is to solve the Liouville equation, or, the same thing, to eval-
uate exp(-itL). DBut there is another more devious way of proceed-~
ing, and this is the subject of the present section. The idea is to
replace Eq. ({I.1), which involves all matrix elements of G, by a
new equation containing only the diagonal part of G.
The procedure followed hereis completely equivalentto what has
n done in the past by diagrams and perturbation theory. However,
t and does not involve expansions.
which selects the diagonal part
and which discards the

nterested in full knowledge of

bee
the present methodis more direc

We introduce an operator D,
of the entire matrix on which it operates,
off -diagonal part. Then

DA), = A, 6, . 1.1
(DAY = A5 O (IL.1)

Note that when D operates on 2 product it sees both factors, not only

the nearest one:

=/ A B . I1. 2
(DAB)jk ZL i0 B éjk ( }
Furthermore, D is a projection operator:

D% = D, D(1-D) = O. (11. 3)

it is possible to write D as 2 tetradic operator. The (ij) com-

ponent of DA is

= D A 1.4

(DA)ij g’%" ijke ki (IT. 4)
In order to recover Eq. (1), we require that ,

= 6 1.5

Dijkl 6ij 6ik je (iL. 5)

Since the combination (1-D) occurs also, we need the unit tetradic;
this is just

1ijklz = by 6j£

% As long as the density matrix is represented as a two -index ma-

trix, the quantum mechanical 1, cannot be represented in the same
In fact, L is a tetradic operator, with four indices. Because

way.
reatments in matrix

of this, classical and quantum mechanical t
notation must be made independently.
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Using D, the Green's function can be divided into diagonal and
non-diagonal parts:

G, = DG, G, 4 =-D)G, (IL. 6)

and

G=G, +G_ . - (11. 7)

In the same way the kinetic equation for G,

4G
i = LG, (11. 8)
can be divided into two equations. First we multiply by D:
p; 4G 9%
% Ci g < DLG = DLGd + DLGo.d. (I1.9)
Then we do the same with (1-D):
. dG _ . 9Go.4
1-D)i 2= — 2 -
( yi Frial = (1-D)L.G = (l-D)LGd + (1—D)LGO q (11 10)

Now we formally solve the second of these
. \ , Eq. (10), for G
In doing this a modified Green's function appears: wol o.d.

G (t) & exp[ ~it(1-D)L] . (11.11)

Thisl functi?n can be defined either by its series expansion or by its
use in solving the equation for matrix A,
. dA

g = (-DILA, (11.12)

with the initial condition A = A(0). The solution is then

Alt) = L Cit(-D)L

(0) = §(t)- A(0). (11.13)
;I‘O}Ileo\czlzeil‘tagiie(ing) itr)x the expon’ent of .g(t) sees not only the L that
A Opz;at:ts .everythlng to its right, including the matrix
cation I:;;:rning to the solution of Eq. (10), one can verify by substi-

' t .
Go.d.(t) = -i Of ds §(t~s){1-D)L Gd(s)
t
=i [ds & (s) (1-D)L G (t-s). (IL. 14)
0
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The initial condition G_ 4 (0) = 0 was used.

When Eq. (14) is substituted in Eq. (9), we obtain the desired
result,

dG

i d_td = DLG,(t) - 1fds DL§(s)(1-D)LG y(t-s). (I1.15)

After this equation has been solved for Gqlt), Eq. (14) may be used
to calculate G, d.

The same equations can be written out in matrix form. {The
following statements are not correct when L is the quantum mech-
anical Liouville operator; then, as we shall see, the commutator
definition of L leads to more complicated results. ) A diagonal el-
ement of G is denoted by Gy and its kinetic equation is

dGy (t)

P = Ly G 8) - 1de[L9 Y1-D)L], Gy (t-5). (IL.1€)

]kk kk

The various diagonal elements of G are not coupled. Similarly, the
off ~diagonal elements (j # k) are

t
G t) = Of ds [£(s) (1-D)L] 5 Gy (t-5). (.17

In a later section the perturbation expansion of Eq. (15) will be pre-
sented. It will'then become clear that the results of this section are
entirely equivalent to those found by "diagram " methods.

I1I. Generalization -

In the last section we considered only the diagonal part of a
Green's function. While this is useful and important, one may!be
interested in other more conyvlicated situations. We shall consider
several variations on the ''diagonal part' theme in this section.

It is instructive to begin by checking over the preceding der-
ivation to see just where the diagonal property of D was used. In
fact, it appeared explicitly only in the assertion that G is initially
diagonal, or DG(0) = G(0). Otherwise D could have been quite arbi-
trary.

Suppose that we want to find the diagonal part of the density
matrix p, which satisfies the equation

dp

i — = . III.1
=L (11t 1)

The procedure used before cannot work here exactly, because the
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initial density matrix may have off~ ~diagonal elements. This means
that the initial value Po.df0) must appear. We shall just give the
general result; the method of derivation will be obvious. We find

.de(t) ' t
i—;— =DLp,(t) - 10f ds D L §(s) (1-D)L p (t-s)

(111. 2)
+ DL &(t) po.d‘(O)

and

t
Py glt) =i of ds G (s) (1-D)Lp,(t-s) + §(t)p_ , (0). (IIL.3)

These equations may be used as the starting point for the derivation
of the Pauli equation (weakly-coupled master equation) of quantum
statistical mechanics. We shall go through the derivation later.

If p is initially diagonal, Egs. (2) and (3) reduce to the same
formal structure as the equations we have already found for the
diagonal part of a Green's function. But the difference in interpret-
ation is important. In the case of the density matrix, we are not
solving for a Green's function in the same sense as in the precedlng

section. The Green's function that goes with the density matrix has
the property

ZZ G, g P (0, (1L 4)

and its diagonal part, G; ik, k( ), connects an element of p at time t
with the initial value of the same element:

p., (t) = ij) J,k(t) pjk(o) + off-diagonal terms, (111.5)

jk
while Eq. (2) refers to the quantities p::(t) only.

The use that one makes of the didgonalization device depends
on what kind of information is desired, and what kind of information
is available initially,

Finally we describe one more generalization. Let us consider
the abstract problem

15: Lx, (ITL. 6)

where x and L are, respectively, a vector and an operator in some
Hilbert space. Let P denote a projection operator in this space; it
defines a subspace of Hilbert space, and Px is the part of the vector
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% that lies in the subspace. One can easily verify that Egs. (2) and work out. The (1-D) ;
: : / ' . -D) on the right operates on L times a diagonal ma-
(3) remain correct if one makes the following changes: trix Gd’ so the L° part drops out: ¢
D+ P,
DL§(1-D)LG = DLS(1-D)\L'G. (IV.5)
Pqa ~ Px, (111. 7) Next we observe that ¢(1-D)\ L' Gy has no diagonal elements.

This is most easily seen by the pedestrian method of expanding; for

[] a — (].—P)X,
o.d. any arbitrary matrix M,

y(s) ->  exp [-is(1-P)L] .

This is the most general result of its kind; it includes the D-oper- ¢ (1-D}M = exp [-it(1-D)L](1-D)M
ator as a special case.

= [1 - 1t(1-D)L + (1/2)(it)(1-D)L (1-D)L - ...] (1-D)M
IV . Perturbation Theory

= (1-D)M - it{1-D)L(1-D)M (IV.6)
A. Weak Perturbations.

When L can be represented conveniently as a diagonal matrix, + (1/2)(it)2(1—D)L(1—D)L(1_D)M I
there are no dynamical problems, because the equation of motion
can be integrated immediately. If L has a small off~-diagonal part, Each term in the expansion begins with a (1-D). This is in fact the
same as the expansion

then a perturbation theory is us eful. Many problems can be re-
duced to this situation, Later we shall discuss in particular the G(1-D)M = (1-D) exp[-itL{1-D)] M (
- =1 -itL(1- IvV.7)

master equations for classical and quantum mechanical weakly -
and the whole quantity has only off-diagonal elements. Now the first

coupled systems --the Prigogine-Brout and the Pauli equations. But

in this section we consider for simplicity only a special case, the D on the left of the integral in Eq. (2) operates on L times a non-

perturbation theory of the diagonal part of a matrix Green's func- diagonal matrix of the form of Eq. (7), so that L can be replaced by
\NLY,

tion.
Suppose that L can be separated into two parts, In this way Eq. (2) becomes, exactly,
dG (t)

- 1.0 v, V.1 | 2 f
L L*® + AL ( ) L= =L0Gd(t) - iN Of ds DL'§'(s)(1-D)L'Gd(t-s). (1v.8)

where L° is diagonal (and hence commutes with D: L°D = DL°), and
L' has no diagonal elements. The parameter N\ measures the

strength of the perturbation 1t _ , o

We want to see the form taken by the exact equation (IL 15), § (s) = exp [ -is(1-DNL® + N LY)] . (IV.9)

4

2 .
A factor N appears explicitly, and $(s) depends on \:

(It should be noted that one may not simplify & (s) in the fol-

aG . (t) t . lowing appa tly obvi :
ijd_f-—— = D]_,Gd(t) -i f ds DL §(s)(1—D)LGd(t-s), (Iv.2) g apparently obvious way:
3 G(s) > exp [-is(1-DI\L!'], (Iv.10)

even though L° is diagonal and {1-D)L° appears to vanish. The rea-

in the limit of weak perturbation or small A. The first term is eas ;
n of w P ¥ son is that (1-D) operates on everything to its right. See the expan-
. sion in Eq. (6) and the equivalent Eq. (7).)
DLG, = L° G, (1v.3) It : o
a d we want only the weak coupling limit, we can replace the
general §(s;\) by its limit §(s; 0), given by

because we take the diagonal part of L times a diagonal matrix Gd H
¢{s;0) = exp [-is(21-D)L°] ; (Iv.11)

o
D1, = (LG = L. (G =L . (G.),.=(L Gjy)... Iv.4 X
( Gd)jj ( d)jj z jk( d)kj jJ( d)” { d)JJ ( ) and, for example by expansion, one can see that

) is a bit harder to §(s; 0)(1-D) = exp [-is(1-D)LO) (1-D) = e 217 (1-D),  (1v.12)

The contribution from the integral in Eq. (2
so only the unperturbed Green's function exp (-isL°) appears.

v
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Thus Eq. (8) becomes

dG
i

(t) t r o
410G (t) - % [ ds DL'e 5L p)LG (t-s)
d § d

dt

+ o3 G.). (IV.13)

d

If one writes this out with subscripts, the result is

. dG(t)
| Kk

t . o)
o 2 y -isLS
= . - L JJ G -
= Lo G ) - ix [ as ), 0 © L (t-s)

G Ptk Jjk kk
+ o\ G). (Iv. 14)

The assumptions that went into the derivation of Eqgs. (13) and
(14) are purely mathematical and have nothing to do with physical
ideas. They are:

1) G is initially diagonal,
2) LO° is diagonal, L'is non-diagonal,
3) The lowest order in \ only is kept.
B. Perturbation Theory to Higher Order.
In order to demonstrate the relation of our results to other
more familiar ones, and to provide a convenient way of going to

higher orders in \, we introduce Laplace transforms.
Let

el
olp) = [at e P G (t) (1V.15)
d
0
be the Laplace transform of Gd(t). The transform of § is

©0
-pt -
of dte™ ¢ () = TR (IV.16)

and the transform of the (exact) Eq. (8) is

Dp(p) - 1G(0) = L plp) - X' DL! e
x (1-D)L! ¢(p). (IV.17)

We have used the property that the transform of a convolution is the
product of the transforms.
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Solving Eq. (17) for ¢(p), we find
_ ) 2 1 -
o(p) = [p+1LO + %D ( m> (1-D)L* ] G,(0). (1v.18)

The standard formula for inverting a Laplace transform is

€ + i

1 t
Gyt = 5r [ dp P o(p) ; (IV.19)
€ ~100

1.:he real constant ¢ must be chosen so that (for positive t) the path of
integration lies to the right of all singularities of ¢(p).

The perturbation theory now comes in through the expansionin
powers of N of K(p;\),

1
k{p; \) = DL} . ]
{(pi N STl D)(IPF N T (1-D)L'. (IV.20)
First we expand the middle factor:
1 1 1

pH(I-D)(LOFALY) ~ pri(l-DIT®  pripyr® (DAL

1
p+i(1-D)L°
+ ———1-———1(1-D)x L —
p+i(1-D)L° p+i(1-D)L.°
. 1
X i(1-D\L' ——
( ) STII-D)LO + ... . {1Iv.21)
Taking the Laplace transform of Eq. (12), we find that
1 D 1
. = = -
prig-pjLe PV = e (-D). (1v.22)
Let
o _ 1
be the transform of the unperturbed Green's function. Then
K(p;\) = DL'y° (1-D)L!
- iNDL!' y° (1-D)LY°(1-D)L!
2
+(i) DL (1-D) L'y (1-D) Ly (1-D)L!
e (1v.24)
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o Since Kk is to operate on the identity Gd(o) =1, and since each Perturbation expa'nsions are.o'nly na‘tural when \ is actually
term begins with D, we need only the diagonal part of Kk itself. .small and \x.zhen .all pertinent quantities exist (mathematically speak-
Each factor yo is diagonal, and the only non-diagonal contributions }ng). At this point the advantagfa of our general method becomes ev-
come from L!'. If we write the general term of ¥k as a matrix prod-~ ident. . Most of o.ur res'ults are independent of whether or not a per-
uct, each L! forming a separate factor, the effect of the (1-D) is tur?atlon expansion exists or converges, and other methods of eval-
that no matrix subscript in the interior of the product can equal t‘he u'atlng the memory operator K({p; A\ ) may be sought in case perturba-
initial or final subscript on the product. In the language of the dia- tion theory does not work.
gram method, the matrix products are connected. ' . .
Incidentally, this provides a method of calculating partition V. Time Dependence

The ultimate objective of this work is to find the time depend -
ence of various quantities of interest in statistical mechanics. In
Q = Trace e'ﬁH= E(e‘pH)”’ (Iv.25) o'rder to avoid excessive detail, we shall consider only a very spe-

;| JJ cial prototype example.
We shall look for the solution of

functions in quantum mechanics. If we want

where H is the Hamiltonian operator and B= l/kT, then we want the
sum of the diagonal elements of the matrix .
dG(t) 2

G oo PH (1V. 26) T = -\ [ ds K(si\) Git-s) (V.1)
0 |

isfi the Bloch equation, N N
But G satisfies the Bloch eq with the initial condition G(0)=1. Here G(t) and K(s;\ ) are just func-

e (1v. 27) tions, not operators or matrices, and we assume that K(s;\) is
—B_{S— = -HG, : regular for small A. In particular we are interested in the solution
for small \.

Equation (1) has the form of Eq. (IV.8) without the L°,

In the weak coupling limit (small \) one can proceed in several
ways. Perhaps the most elementary argument is that when \ is

with the initial condition G(0) = 1. This is a natural setup for .the
preceding perturbation theory. We replace (iL) by H, and write,

ith L, :
as wit small, then dG/dt is small and G(t-s) can be replaced by the term
H = H® + \H" (IV.28) G{t) + O()\Z). In this way Eq. (1) becomes
d find t
We replace t by B, take the Laplace transform of Q(p), an dG(t) _ 2 ) 4
that (as in Bq. (18)), T = -\ Ofds K(s;N) G{t) + O0&). (V.2
o0 —QZ 1
f dBe Q(p) = Trace z+H ' This is now a simple differential equation rather than an integral
0 equation. Its solution is
i -1
o
- o +17 [ Hor (1D | LI
?( ji z+(1-D)H i G{t) = exp [—x [ ds [ ds' K(s'i)) +o0d) J . (V.3)
0 0
-1 ' :
_ z 2t 1O _)\2 20 1 H'] > (Iv.29) We assume that K is integrable from zero to infinity, so that there
T i) z+(1-D)H" 1. is some time beyond which
3 J 33 t T Pey whic
. : ; . O is diag- t T

All matrices are expressed in the representation where H is i .g . ' '
onal. Equation (29) is a suitable starting point for the investigation Of ds K(s; M) = Of ds K{s;\ ) (V.4)

of various kinds of approximation schemes in the calculation of par-
tition functions. to sufficient accuracy. Then{for t much larger than 7,




120 ROBERT W. ZWANZIG
t s Tm.
fds f ds!'K(sh\) = tf ds K(s;\) (V.5)
0 0 0

and for such large times, G decays exponentially:

T
m

G(t) T exp [—)\Zt [ s K(s;)\) + 00d) } (V. 6)
0

Note that small X\ is required in this argument. .
The preceding "derivation'' is not rigorous, and the result is

not quite correct. In this paragraph we give a more rigorous but
less informative derivation., This is based on the substitutions

% = )\Z t, (V. 7)
g(x) = G(t) . ‘ (V'S)

Now Eq. (1) can be written

x/)\z 5
dg(x) = - f ds K(s;\) g{x-\"s). (V.9)
dx
0
We take the limit
N> 0, t o0, x fixed. (v.10)
Then in the limit,
0
dgle) . [ as K(s; 0) gix), (V al1)
dx
4]
or
fee)
glx) = exp [ x [ ds K(s; 0) ] , (V.12)
0
which is equivalent to
[v4] .
Glt) = exp[ 2t [ ds K(s;oﬂ . (V.13)
0

Again we find an exponential decay, with the same sort of rate con-
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stant as before, but only in the double limit A = 0, t — 0, )\Zt fixed.
This limiting process, introduced by Van Hove, is elegant and easy
to apply, but tends to obscure an important feature of the time de -
pendence when A\ does not go to zero, but remains finite.

To see that all rn_a—y_not be well, let us assume that as t - o,
G decays exponentially:

G(t) ~ exp(-at). (V.14)

When this is put into Eq. (1) we get

t
ae_atfv )\2 f ds K(s;)\)e-a(t_s) (V.15)
0
as t= ©, The factor exp(-at) can be cancelled out, leaving
2 *© +as
a= N f ds K(s;\) e (V.16)
0

in the limit t—- o0 . This equation determines the rate constant for
the assumed decay.

If there is actually a decay, then e is positive and exp(as) in- ’
creases exponentially in s. For a to exist, the memory K(s;\) '
must decrease exponentially at least as fast as exp(-as). The La-
place transform

0
KpiN) = [ ds e P% K(s; ), (V.17)
0

in particular, must be analytic on the imaginary p-axis.
But this cannot be so, in the weak coupling limit anyhow.
There the form of K(s; \) is known; it is typically, as in Eq.(IV.14),

K(si\) = ) Lt e_iSLS‘JjL.lL (V.18)
k#j J
and the Laplace transform is
K(P;’ ) = K(p) = Z Ll;' _'l-_l—L—o— L,'k. (V.l9)
‘ k#y O PTRy

Since L° is Hermitian, K(p) has poles on the imaginary axis. We
are forced to conclude that G(t) will not decrease exponentially as
t - T

What is the trouble here? It is that K(s;\), according to
Eq. (18), is a periodic or almost periodic function and is not inte -
grable. This is connected with the problem of recurrences. Again,
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by taking a special example we can see what is going on in general.
Let us assume that

+N 1
K(si M) =), =z exp(-isj/N)
N
j#0
. N
== 1 cos(sj/N). (V. 20)
1

This corresponds to Eq. (18) with

=L ' =1/2N, ifk#o0, '

I = 1
i=0 Lo = ok
(v.21)

o

bk =

k/N, for -N< k < +N,

where N is supposed to be very large. In the limit N—~ « , we can
replace the sum by an integral, and we find
sin s .
K{s;N) — - (V.22)
which is certainly not periodic or even almost periodic.

But why should we take the limit N - « ? We may be dealing
with a finite system, so N is not infinite. It is important to see
what limitations are imposed by finite N. In the case of Eq. (22),
for example, the approximation (sin s)/s is valid only for certain
s. We note first that by its definition K(s;\) is periodic:

K(s + 2®N;N) = K(si\), (V.23)

although the period is very large. Next we observe that the suln in
Eq. (20) can be calculated exactly, since it is a geometric series.
We find

sin s

Ks;\) = % (cos s =1) + cot(s/2N) — (V.24)

s
2N
which shows what is left out in Eq. (22). Only when s is much
smaller than N, and only if terms of order l/N are neglected, will
Eq. (22) be valid (in the first period anyhow). ‘
Now we observe that G(t) is determined only by values of K(s)
for s < t; this follows from Eq. (1). Use of the approximation in
Eq. (22) is valid only for s << N, and only if microscopic ''noise "
in K, of order 1/N, is of no interest. The G(t) calculated using
Eg. (22) is valid only under the same restrictions. In particular,
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the bebavior of G(t), as t -~ but N remains finite, is not correctly
calculated in this way.

If we want only the "early behavior, s << N, then we can find
it by the following procedure.

We shall solve Eq. (1) by Laplace transforms. Let

[2e)
-pt
o(p) = [ at e P Gy). (V.25)
0
Then Eq. (1) becomes

pold) -1 = 2°k(p) o(p), (V. 26)

where Kk (p) is the transform of K,

1 + i
K(p) == lo T

2i g p-i (v.27)

Note that k(p) has branch points on the imaginary axis at p = = i. So
even with the approximate K, G does not decay exponentially for long
t.

Solving for ¢{(p) we find

o(p) = L

= (V.28)
p + Nk(p)

The standard formula for the inverse Laplace transform gives
| €t ico ePt
G(t) = m S dp NN (V. 29)
. P + Nk(p)
€ ~ico
where ¢ is any positive real number. The calculation of G(t) has
thus been reduced to quadratures.

The Laplace transform K(p) was defined only for Re (p) > 0. If
we want to use the methods of theory of complex variables, deform-
ing contours, evaluating residues, etc., we have to find the analytic
continuation of K(p) to the negative half plane, Re (p) < 0. Because
the singularities of Kk(p) are branch points, we must cut the plane,
and this may be done in any way that is convenient. The choice that
seems easiest to use is indicated by the heavy line in Fig. 1, p.124.

With this choice of analytic continuation of k (p), it turns out
that £ is analytic near the origin:

k(p)= X+ op), (v.30)
so that ¢(p) has a pole at the root of

p+ N k(p) = 0, (V. 31)
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namely,

p = %— + o0y . (V.32)

The presence of the pole at this point is due entirely to the Partic—

ular choice of cut. If the plane were cut instead from p = -i to

p = +i, there would be no pole in the cut plane. .
Now the contour in Eq. (29) may be deformed as shown in

Fig. 1. Then G{t) falls into two parts, 2 term from the residue at

1

cut

Fig. 1

the pole and the integrals around the cuts. We shall not evaluate
the latter integrals here; they are tedious, but easy to find when \
is small. We determine that

0

i 4

G(t, from cuts) = o7 5' dwc—"%”— + o) (V.33)
w

1

in the limit of small \. The pole gives a contribution that decays

exponentially:
4
G(t, from pole) = [1 + N2 + 00H)] exp[-(¥n/2)t+O(NE)] . (V.34)
The sum has the structure
2 .
G(t) = exp| —()\Z’rc/Z)t + O()\4t)] + \° X (a function

bounded in t, but not exponentially
decaying) . (V. 35)

The most instructive feature of this result is that the expo -
nential decay represented by the first term is ultimately submerged
in the non-exponential decay of the second term. In the Van Hgve
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Himit X = 0, t—» w0 , )\Zt fixed, the second term drops out and one
gets simple exponential behavior:

alt) By exp(-22xt/2). (V.36)

But for finite X and t, the exponential decay persists only for times

t << O ( % log(l/)\2)> . (V.37)

If we had cut the p-plane from p = -i to p = +1i instead, we
would not have been able to analytically continue Kk (p) through the
origin, and the contour integral would not see a pole. The function
G(t) must be the same no matter how it is evaluated; but in this way
the separation into an exponential decay and a small remainder
would not have been so obvious.

If the parameter X is not small, it is no longer clear that G
will show exponential behavior for any significant time interval.
Much more study of solutions of Eq. (1), with various N and K(s}),
is needed. :

We have considered in this section only a rather special ex-
ample of the general problem of finding time dependence. However,
several general conclusions are suggested. First, exponential de-~
cay is not universal, and if it appears, it may ultimately be hidden
in some other kind of time dependence. Second, when one takes ad-
vantage of the approximations that can be made on a system with a
large number of degrees of freedom, the resulting G{t) may be valid
only for a limited time interval, and only if small scale "noise" is
ignored.

VI. Examples of Weak Perturbation Theory

In this section we shall study two specific examples of the pre-
ceding formalism. The first example is the Pauli equation; the sec-
ond is a classical analogue.

It must be emphasized that entirely satisfactory derivations of
both equations are known. In particular, Van Hove's derivation of
the Pauli equation is responsible, to a large extent, for much of the
work going on these days in the theory of irreversibility, especially
that in which diagram and perturbation techniques are used. We
shall discuss new derivations here just to illustrate the convenience
and directness of the preceding formalism.

A, The Pauli Equation.
Let us consider the Pauli equation first, The system is de-
scribed by a Hamiltonian

H =H° + \H'; (VI.1)
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we write all operators as matrices in the representation where HO is
diagonal. We require further that H' has no diagonal elements. Now
suppose that we are interested only in averages of operators that
commute with HO, or are diagonal in the unperturbed representation
Since the average of any observable a is given by

< a > = Trace {a p(t)}, (VI.2)

where p(t) is the density matrix, it is evident that we need to know
only the diagonal elements of p(t). Because of this limitation the
theory we have just discussed is immediately applicable.

We make one further restriction. Instead of the most general
initial condition, we shall use only ensembles whose density ma -
trices are initially diagonal. This corresponds to initially making
the phases random.

So we want to find the small-\ approximation of the following
exact equation (see Eq. (IIL. 2)) for the diagonal part py of the densi-
ty matrix (assuming Py, d_(0) =0):

id'zl‘i(t) = DLp {t) - ioft ds DLG(s)(L-D)Lp {t-5), (VI.3)
where
L =1% +\L" (VL4)
and
G(s) = expl| -is(1-D)L] . (VL. 5)

Taking the (kk) element of Py we have

. dpkk(t) t

L = (L] - iof ds[ L§(s)(1-D)Lp ft-s)],, - (VI.6)

Consider the first term on the right; this is
(Lo ) = =LH.p,] == (Hp =p H) .  (VL.7)
d'xk h *Fad'kk d "d kk

But because Py is diagonal, the diagonal elements of (Hpg-pgH) van-
ish, and we find

DLp, = 0. (V1. 8)

Now consider the " memory' term; this begins with
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1
L-$(1-D) 'L = —
[ (1-D) - Loyl = —[H §-(-D)Lp ] ., (VI.9)
and because H = H® + NH' with H® diagonal, we obtain
1
=M1, & (1-D)-
= (1-D)- Lp 1, (V1.10)
Next we note that
-isL°
F(s)-(1-D) = [e + O(N] (1-D), (Vi)

just as in our earlier discussions of perturbation theory. The term
of order \ in Eq. (11) gives rise to a term of order N\ in the result,
so we neglect it here. According to Eq. (I.16),

-isL,° -iHOs /H iH©
e (1-D)Lp, = e s/ [(1-D)Lp,] JHOs /h . (VI.12)
so the memory term becomes
1 -iH%s /h iHCs /
2, _ ~ i s/*h
I e (0 D)Lp,(t s)) e L (VL13)
Next we put in
(1-D)Lp =L (1-D) H, p,] - L [y ;
4= F vpgl =% rpgl s (VI1.14)

the HO® term drops out. In terms of conventional matrices, the
memory is
2

N -iH%s /f . iH®%s /A
v [H', e [H',pd(t-—s)] e / J . (VI.15)
kk
Incidentally this is just the same as
-. o
¥opLte LT by (VI.16)

which illustrates clearly the formal similarity of the quantum mech-
anical theory to the simpler result given in Eqs. (IV.13) and (IV.14).

In order to write out the result completely in matrix form, we
need the eigenvalues Ey of the unperturbed Hamiltonian HO. Then it
is easy to work out the commutators in Eq. (15); we get

N 2
= ) IHyl

Ey -E,
2 .2 cos( - >{pkk(t-s)-pu(t-s)}.(VI.n)
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Let us define

w, {(s)=w

(s) == |
S -=—
kg ik ﬁZ k.

Then the equation for pyk(t) is

degt) 5 ¢ 3
—_—— =\ ds o, (s)[p, (t-s)-p (t-s)] + O(N'p).(VI.19)
dt £§k{ k4 18 Kk

This is almost the Pauli equation. We still have to take care of the
time convolution, and we have not yet introduced the simplifications
that are possible with a large system.

We follow the first solution method described in Section V.
Although it is not as neat as the Laplace transform method, it is
much easier to use. In this scheme p(t-s) is replaced by p(t),
terms of order ()\Zp) are neglected, and we get

dp,, (t) t
g:tk_ NG Y [ds ) (s) [p“(t) =Py (B F o(lp).  (VI.20)
f#k 0

The integration of w is trivial:

t Ey-E
2 2 h kB4

- ' ; . C21

0de w, £(S) = |Hka sm( 5 t> (VI.21)

-E
,ﬁZ Ek s

In the limit of large t, the final factor goes over into a delta func-
tion:

h Ex-Ep N L
i ~hé(E
Ek'Ef s1n( 5 t\/ (

B (VLL22)

But we shall not yet take this limit.

So far the unperturbed states have been labelled with single
subscripts. However, in a many-body system each unperturbed
state can generally be labelled with many quantum numbers. We
choose the total energy E and we let a denote the eigenvalues of all
operators that commute with H°, Then each state is marked by
(E, a). The matrix elements of the perturbation are

Hk‘l -+ H(Ea; E'a") (VI.23)

and the diagonal elements of the density matrix will be called

Praclt) = p(East). (VL. 24)
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In this notation Eq. (20) is

dp(Ea;t) .2 2 SN ; E__'E_'>
% =\ g'élﬁle(Ea,Ea)l L snl( T t

X {p(E'a';t) - p(Ea;t)} . (VI. 25

In order to take advantage of the & -function limit in Eq. (22),
we should like to be able to replace the sum over E' by an integral.
Let us investigate the conditions under which this is allowed.

When t is large, the sum over E!is limited, because of the
sine factor, to those states for which

|E - E'| = O(h/t). (V1. 26)

When the system is large, the energy levels will be closely spaced,
and we can introduce a density function N(E) such that N(E)AE is
the number of states whose energies lie between E and E + AE .,
The number of states that are included in the sum in Eq. (25) is
roughly

N(E) x O(h/t). (VI. 27

In order to be able to convert the sum to an integral, this number of
states must be considerably larger than one:

N(E) X O(# /t) >> 1, (V1.28)

or

t

W << O(l). (VI. 29)

But the density of states in a large system is proportional to the
number of degrees of freedom. This means that the time interval
for which the Pauli equation is valid is limited by the size of the
system. (This is the same kind of limitation that we have discussed
in Section V .} .

We should also be prepared to find that for any finite \ the
Pauli equation will only be valid for a finite time interval. This is
connected with the possibility of branch points , as we have re -~
marked in Section V.

In the limits used by Van Hove: (1) the size of the system goes
to infinity first, (2) A — 0, and (3}t = « with \°t fixed. Then the
Pauli equation is valid. The various corrections to be made, when
these limits are not taken, must be based on a much more careful
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analysis of Eq. (19).
In the limiting case we can replace the sum by an integral:

o> [AE'N(E'), (V1. 30)
:E/
and we can use Eq. (22). Then Eq. (25) becomes

2m

dp(Ea; t) - }\Z dE' N(E')~— 6(E_E|)IH(EQ;EIQI)' 2
a! f

dt

x {p(E'akt) - p(Ea;t)} . (VL. 31)
Performing the integration, and using the abbreviation
g
W(a',a) =f2]— | H(Ea'; Ea)| 2 N(E) = W(g,a'), (VI.32)

we find that Eq. (31) is

dp(Ea; t) _

Sul 2 ?W(a,a') p(Eat;t) - W(ala) p(Ea;t)} . (VI33)

This is the Pauli equation
We have had to make various assumptions to get the desired
result:
1) the density matrix is initially diagonal,
2) X\ is small,
3) the system has many defrees of freedom,
4) tis large {of order 1/ ¥ ), and
5) matrix elements are " smooth” functions of E.

The fifth assumption was made tacitly. The first and second
assumptions are needed to arrive at Eq. (19); the others are needed
to go the rest of the way to Eq. (33). If the third through fifth are
not satisfied, one can always use Eq. (19), which is a kind of exten-
sion of the Pauli equation.

B. The Prigogine -Brout Equation.

As our second example of perturbation theory, we shall con-
sider a system in classical mechanics where the unperturbed mo-
tion is that of free particles, and the perturbation is due to (weak)
forces between the particles. We shall derive a “master' equation
which was obtained first by Prigogine and Brout. Another deriva-
tion, based on diagram techniques, is given in this volume by Ba-
lescu (see p.382).

The Hamiltonian for our system is
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Ny 2 1oy

H=.Z T Pyt Z—)\ZZV(lrj—rk,). (V1.34)
i=1 j# k
=1

In this equation, p, is the momentum of the j-th particle, m is its
mass and V{ l Ti- T | ) is the spherically symmetric potential energy
of interaction of the particles situated at r; and Ty The Liouville
operator is (as in Eq. (I.14))

L =1°+\L, (VI1.35)
N
1 )
o - 4 ¥
Lo = -5 ), Py 5y (VI.36)
j=1 J
N
c 1 aV(|r;-r.])
L=+1TEZ__I__LJ_I_<—8—-—8—>, (VI.37)
, ar op, Opy
itk ) J

The “vector” in Hilbert space is the phase space distribution func-
tion f(p, r;t). We use p and r to denote collectively all momenta and
positions whenever convenient,

We can approach the derivation of the desired kinetic equation
in two different but equivalent ways. The method used by Balescu,
for example, is to expand f as a Fourier series in positions, keep-
ing the momenta in the Fourier coefficients. Then the Liouville
equation becomes a hybrid matrix (in Fourier components of posi-
tion) and differential operator (in momentum space) equation. The
Prigogine-Brout master equation is connected with a particular
diagonal element of the Green's function exp(-itL) inthis represent-
ation. It is instructive to carry through the derivation in this way,
but we shall not do so here.

Instead we use the idea of a projection operator. Suppose that
we are concerned with calculating averages of functions of momenta
only., For this purpose we do not have to know all of f(p, r; t); we
need only its projection on the subspace of functions of momenta.
Let P be the operator that removes positions by integrating over the
volume § of the system:

1
P =N Qf dr, ...QfdrN . (VI.38)

When P operates on a function that is already independent of posi-
tions, it gives back the same function, since the volume integrals
then cancel out the factor 2°N, This means that P2 = P, or Pis a
projection operator.
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The projected distribution function

fl(p,-t) =P . f(p, r;t) (VI.39)
is all we need to know for calculating averages of functions of mo -~
menta. We shall now find the kinetic equation for :El. '

The starting point is Eq. (IIL. 2), translated, according to the
prescription at the end of Section IIL, into

of(t ¢ is(1-P)L
i Blt( b PL(t) - iof as PL o B#U-PIL 1 by, £,(t-5)
v p e PG by £(p, x5 0). (V1.40)

The initial value of the position-dependent part of f, namely
(1-P) £(p, 75 0) = £(p, r; 0) - £,(p; 0),

appears in this equation.

Once a suitable solution of Eq. (40) has been found, the.re—
maining part, (1-P)(p, r;t), can be calculated by the translation of
Eq. (IIL 3).

Consider first the term

PLf = PLofl + N\ PL'f. (V1. 41)

1
Because f; does not depend on position (by definition) and because Lo
contains derivatives with respect to position, the term P.Lof1 van-
ishes. The other part, PL'fl, vanishes also, but for a different
reason. The only position dependence of ! f} is contained in factors
like 9 V(r.k) /8 T When the integrations required by P are per-
formed, ﬁ]hey sed only such factors. The integral over all space of

the force vanishes; so

Now let us consider the memory term. We note first that
whenever PL° operates on something it gives a vanishing result.
This is because LO differentiates with respect to position and P
integrates these derivatives over all space. (We assume that the.
resulting surface integrals all vanish. ) So the memory term begins
with MPL'. The final Lf;(t-s} in the memoxry term can be .rejpla.ced
by X L'j(t-s) because 1.9 differentiates with respef:t to position and
] has no position dependence. The memory term is thus

18P “isU-PIL by (). (VI 42)

2
PL L(l—P)Lfl(t—s) = \"PL'e
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Just as in our previous examples of weak perturbation theory,
we can now make the approximation

e—is(l—P)L (1-P) = e"iSLo(l_p) + O(N), (VI1.43)
leading to
pLe is(1-PIL (1-P)L£ (t-5) = 3*PL! oL’ (1-P)L'E (t-5)
+ o). (VI.44)

We have already shown that PL'f) = 0, so that
- tf = 10 .
(L-PIL'E = L'

we can therefore drop the (1-P) from the right-hand side of Eq. (44).
To the same order of approximation, the contribution from the
initial (1-P){ is

AP L' e ST

o

(1-P) f(p, r; 0) + o(x?‘(l-P)f) . (VI.45)
Let us assume that £(0) has only a macroscopic variation in space ,
or that it is essentially constant over the range of intermolecular
forces. Then the integration required by the P on the left sees es -
sentially only the position dependence of the force in L', and the in-
tegral is negligibly small.

Furthermore, let us acceptthe argument of Prigogine and Ba-
lescu that the quantity (1-P) £(0) is to be regarded formally as being
itself of order A. Their reasoning is based on the idea that the spa-
tial variation of a distribution function will generally be of the same
order of magnitude as if the system were in thermal equilibrium .
Since the spatial dependence of the equilibrium distribution is pro-
portional to

exp< N ZZV(Irj—rkl)/kT> s
<k
in lowest order of X the equilibrium distribution looks like
f(equilibrium) = (function of momenta)
+ A X{function of momenta and positions)
+ O(M) . (V1. 46)
Then (1-P) f(equilibrium) is of order X\, This argument appears to

be sensible as long as the nonequilibrium f does not deviate much
from its equilibrium limit; otherwise it does not appear to be valid.
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Anyhow, if we accept their argument, the extra term
2
o N(1-P) )

in Eq. (45) is formally of order )\3 and can be omitted.
The result of the preceding discussion is

o, (p; t)
ot

t . o
-isL
:-)\ZfdsPL'els
0

L'f (pjt-s) + o(\3). (V1.47)

We shall conclude the derivation by showing that in the limit of large
time and small \ (with ¥t held constant), Eq. {47) reduces to the
Prigogine-Brout equation.

It will be clear, just as in our previous discussions, that the
)\2 t limit gives

'sLO
B £(pst) . (V1. 48)

of, (p; t) o
-———————l = - )\2 f ds PL' e
ot 0

Putting in the definition of L', we obtain

PL'e -is1” ZZ ZZ(%‘ ‘a‘f?i)

J#k
av _ T o
< L o fan _<|__1_BL
oV g
8V(|r -r I)
x BV (88 -8—8——>. (V1. 49)
Zir}L P}JL P,

From here on we will use Balescu's notation. The Fourier expan-
sion of V is

V(r) = QL ), 7 T (VI. 50)

The volume integral in Eq. (49) becomes

x o-isL® GifM(ry -7y ) (VI. 51)
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According to the definition of 1O,
exp (—1sL = exp( Zm J Br >, (VI.52)

so that

o
r Lo - it _ gt _

oISk e (rp-ry) = elﬁ (rpp-ry) o I8t (Pp.-py)/m (VI. 53)

It is now easy to do the volume integrals; the only nonvanishing con-

tributions come from (j =, k =v)or (j=v, k =), and Kronecker
deltas in £ and £' appear. We get, after some rearrangement,

- L 1 8 1o oosas 2
PL! ™ ——ZZ( >~Zu[v]
2
T#k Opy /825 £
(VI1.54)
. 0 0
X eXP[~1S£'(Pj-Pk)/m](a—pT'8—pk>-
The time integral in Eq. (48) sees only the factor
exp [ -isf(pj—pk)/ m ],
and
[*e]
“ist{p:~ P; -P.
[ as e 4(P; PI/m (z- J—L> (V1. 55)
0 - m
in terms of the 6  function. '
The final equation is
8f1(p; t) -
1P g a4 2 pJ Pk
——— = 5o ) gLV, T s R L
9t ( 0 ) 2 Z '(
2R oy ‘ ! m
( o5, ép_ > £(pit) . (VI.56)

This is the result of our derivation, in a form and notation that agree
entirely with Balescu's.

VII. Time-Correlation Functions

In a lot of recent work in the theory of irreversibility (see, for
example, Montroll's lectures, this volume, p. 221) the evaluation of
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time -correlation functions is of decisive importance. In this section
we shall show that such functions (at least in classical statistical
mechanics) obey Volterra equations of the sort that were discussed
in Section V.

Consider some dynamical quantity U(p, q), and some equilib-
rium ensemble density f(p, q) such that

< U >

[ fap aq U(p, q) £(p, ) =0 ,

5 (VII.1)

< U“>= [fdp da U¥(p, ) £(p, q) = L.

There is no loss of generality in restricting < U > and < U? > to the
values zero and one; this can always be arranged.

Let p(t), q(t) be the momenta and positions at time t in terms
of initial momenta and positions, and write

ute) = (), att) )
We want to find the time dependence of
Aft) = < U(0) U(t) > . (VIL. 2)

Note that A(0) = 1 because of the normalization of U.
We shall demonstrate that

t
= - [ ds K(s) Alt-s) (VIL. 3)
0

dA(t)
dt

with K(s) suitably defined. We use the method of projection opera-
tors.

The time ~correlation function will be rewritten in the sugges -
tive way:

A(t) = [ fdp dq U(p, a) Z(prast) (VIL. 4)

where the quasi-distribution function 7 is

e ast) = U ple), q(t))f(p, a) (VIL 5)
= [T Ulp, a)] Hpoa) (VIL 6)
= [U(p, q) f(p, aP] . (VIL. 7)

In going from Eq. {5) to (6) we have used Eq. (I.6). To get from (6)
to (7) we took advantage of the assumption that f is an equilibrium
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distribution, and therefore independent of time. Also, it is clear
that

Fip, q; t) =‘eitL Z(p, 9; 0)

(VII. 8)
#(p;q; 0) = Ulp, q) f(p, q) ;
or
L, 07
g = - L7 (VIIL. 9)

with the initial condition given by Eq. (8).

The basic point of the rest of this calculation is that we do not
want the general properties of the Green's function exp(itL). We
need only its effect on a special 'initial state" Uf, and we want only
as much of 7(p, g;t) as is needed for the averaging of U (Eq. (4)).
One way of putting this is that we want the diagonal element of exp(itl)
between 'unit vectors" UfY % in Hilbert space. However, we can also
more conveniently use the projection operator formalism.

Let us introduce a projection operator P, and its associated
subspace in Hilbert space. The subspace is supposed to include
functions of the form Uf{, and it should allow the following :

Jfdpdquz = JfapdquPp7 . (VII.10)

The simplest projection that does this is the following one, defined
by its effect on some arbitrary function G:

PG = U(p, q) f(p,q) [/ dp'dq' U(p',q") G{p", q").  (VIL11)
This P selects only the component of G in the direction of U. Because
1)
P%G = P(PG) = PG
(as a result of < U2> =1), Pis clearly a projection. This is the
reason why we originally normalized U to unity.
With this P, the requirements that we set up may be shown to
be satisfied., For example,
PUf = Uf [[dp'dq' U UL = UE, (VIL.12)
and
Jfapdqupr% = [[dpdqU-Ut [[dpldq'uz

= [ faptag'u? . (VIL.13)
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Since we want only P4, since P'7(p,q;0) = #(p, q; 0) from
Eq. (12), and since 7 satisfies Liouville's equation, we have ex-
actly the situation discussed in Section III. The methods of that
section can be used directly to find a kinetic equation for P %

 OPH(t) _ (1-P)

t .
i = - PLP#(t) -i [ ds PLe
ot ;

L 1-P)LP#(t-5). (VIL.14)

(There is a change in sign from the equations of Section III. This is
because Eq. (9) has a (-L) instead of a (+L).)

Now we multiply through by U and integrate over phase space.
The left-hand side becomes

Jfap aau 19?{%—(1) =18—§%—t—) . (VII.15)

On the right-hand side we note that

[fap aguPLP#% = [[dpdqULP% , (VIL.16)

because of the definition of P. Next we put in

P =Uf [U% dp'dq', (VIL.17)
so that
[ fdp dq UPLP? = [ [dp dg ULUS [ faptaqt U . (VIL18)
But in general
[fdp aq ULUL = < ULU > =0. (VIL.19)

This is because LU is, aside from factors, just U. Then ULU is
proportional to UU, or proportional to dU2 /dt. The equilibrium
average of a time derivative vanishes; gq.e.d. The first term on
the right of Eq. (14) does not contribute.

In exactly the same way one can easily show that the second
term on the right is

PL e1s(1-P)L

(1-P)LP % (t-s)
{ffdp dq ULe S -P LUf}

x [faprda’ U(pt, ') #(p" a't)

il

1

K(s) A(t-s), (VII.20)

where the memory function K(s) is
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K(s) = [ [dp dq uLesUPIL gy
(1P
= < uneSEPIL Ly (VIL.21)
Consequently, Eq. (14) is equivalent to
da(t) ¢
S Of ds K(s) A(t-s), (VII.22)

which is what we set out to show.

The memory can be expressed in a more suggestive way by
using Eq. (I.3), or

LU = -iU, (VIL.23)

and by taking advantage of the Hermitian character of I.. Then we
get

is(1-P)L -
( ) Uu>. (VII.24)

K(s) = <Ue
Thus K(s) is the time correlation of fJ, but evaluated with a modified
propagator.

We conclude this section with a few comments on the evalua-
tion of transport coefficients with Eq. (22), As many authors have
shown (see Montroll's lectures, this volume, for examples), trans -
port coefficients can often be expressed in the form

> .
. et

c=lm [ dte  At). (V1I.25)
e>0F 4}

]
Let us define o(e) as the Laplace transform
* et
o(e) = [dt e “A(r). (VIL 26)
0

Equation (22) may be solved by Laplace transforms: see Section V
for the method in some detail., The solution is

0 -1
ole) = [e +0fdt ) } ) (VIL.27)
If there are no peculiar divergence troubles, the limit o is
. © -1
o =lim o(e) = l: lim fdte_EtK(t)} . (VIL.28)
e >0t e=0T 0

All one needs is the limiting behavior of the transform of the mem-
ory function.

The preceding result has a close relationship to what one gets
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v from the Markoffian approximation 8. U. Fano, Revs. Modern Phys. 29, 74 (1957). This valuable ar-

! w ticle contains an explicit construction of the quantum mechanical
dA(t) fK(s) ds- Alt) . (VIL. 29) Liouville opejr‘ator in th‘e Hilbert space of operators. Another
dt 5 way of combining classical and quantum mechanical methods,
which makes use of the Wigner function, is also discussed here.
This equation can be solved easily to give 9. R. J. Rubin, J. Math. Phys. 1, 309 (1960). Although there is no
0 specific reference to this article in the lectures, it is neverthe-
A(t) = exp [-tf ds K(s):\ s (VII. 30) less worth looking up. Rubin gives a thoroughly worked out ex-
0 ; ample of how a simple classical many-body system can appear
and 0" is given by : to be irreversible. The treatment is elementary, and makes no
00 0 -1 . use of diagrammatic or field theoretic techniques. The discus-
o = f dt Aft) = [ f ds K(s):l (VIL. 31) sion of time dependence in Section V of these lectures is greatly
0 0 ' influenced by Rubin's work.
It is interesting to see that if integrals and limits exist, etc., the

Markoffian approximation actually gives correct results for trans-
port coefficients.
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